Lyapunov Spectrum Properties and Continuity of the Lower Joint Spectral Radius

نویسندگان

چکیده

Abstract In this paper we study ergodic optimization and multifractal behavior of Lyapunov exponents for matrix cocycles. We show that the restricted variational principle holds generic cocycles [in sense (Bonatti Viana in Ergod Theory Dyn Syst 24(5):1295–1330, 2004)] over mixing subshifts finite type. also spectrum is equal to closure set where entropy positive such Moreover, continuity at boundary $$h_{top}(E(\alpha _{t}))\ \rightarrow h_{top}(E(\beta ({\mathcal {A}}))$$ h top ( E ? t ) ? ? A , $$E(\alpha )=\{x\in X: \lim _{n\rightarrow \infty }\frac{1}{n}\log \Vert {\mathcal {A}}^{n}(x)\Vert =\alpha \}$$ = { x ? X : lim n ? 1 log ? } prove lower joint spectral radius linear under assumption satisfy a cone condition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity Properties of the Lower Spectral Radius

The lower spectral radius, or joint spectral subradius, of a set of real d× d matrices is defined to be the smallest possible exponential growth rate of long products of matrices drawn from that set. The lower spectral radius arises naturally in connection with a number of topics including combinatorics on words, the stability of linear inclusions in control theory, and the study of random Cant...

متن کامل

Continuity of the Joint Spectral Radius: Application to Wavelets

Abstract. The joint spectral radius is the extension to two or more matrices of the (ordinary) spectral radius ρ(A) = max |λi(A)| = lim‖A m‖1/m. The extension allows matrix products Πm taken in all orders, so that norms and eigenvalues are difficult to estimate. We show that the limiting process does yield a continuous function of the original matrices—this is their joint spectral radius. Then ...

متن کامل

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-comple...

متن کامل

On the joint spectral radius

We prove the `p-spectral radius formula for n-tuples of commuting Banach algebra elements. This generalizes results of [6], [7] and [10]. Let A be a Banach algebra with the unit element denoted by 1. Let a = (a1, . . . , an) be an n-tuple of elements of A. Denote by σ(a) the Harte spectrum of a, i.e. λ = (λ1, . . . , λn) / ∈ σ(a) if and only if there exist u1, . . . , un, v1, . . . , vn ∈ A suc...

متن کامل

Regular Sequences and the Joint Spectral Radius

We classify the growth of a k-regular sequence based on information from its k-kernel. In order to provide such a classification, we introduce the notion of a growth exponent for k-regular sequences and show that this exponent is equal to the joint spectral radius of any set of a special class of matrices determined by the k-kernel.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2022

ISSN: ['0022-4715', '1572-9613']

DOI: https://doi.org/10.1007/s10955-022-02910-w